Math 241
Winter 2023
Lecture 4

class QZ 3
Use the right triangle below to complete the following chart.

$$
\begin{array}{l|l}
\sin A=\frac{3}{5} \checkmark & \csc A=\frac{5}{3} \checkmark \\
\hline \cos A=\frac{4}{5} \checkmark & \sec A=\frac{5}{4} \checkmark \\
\hline \tan A=\frac{3}{4} \checkmark & \cot A=\frac{4}{3} \checkmark
\end{array}
$$

$$
c^{2}=9^{2}+12^{2}
$$

$$
c^{2}=225
$$

Some algebra review:

1) Reduce $\quad \frac{9 x y}{3 x-6 y}=\frac{x^{3} x y}{B(x-2 y)}=\frac{3 x y}{x-2 y}$
2) Simplify $\frac{2 x^{2}+8 x}{x^{2}-16}=\frac{2 x(x+4)}{(x+4)(x-4)}=\frac{2 x}{x-4}$

$$
x^{2}-4^{2}
$$

3) Reduce $\frac{x^{2}+2 x-15}{x^{2}+x-12}=\frac{(x+5)(x-3)}{(x+4)(x-3)}=\frac{x+5}{x+4}$
4) Simplify $\frac{x^{3}-16 x}{x^{3}+6 x^{2}+8 x}=\frac{x\left(x^{2}-16\right)}{x\left(x^{2}+6 x+8\right)}$

$$
=\frac{(x+4)(x-4)}{(x+4)(x+2)}=\frac{x-4}{x+2}
$$

5) Multiply:

$$
\begin{aligned}
& \frac{2 x}{3 x-9} \cdot \frac{5 x-15}{20 x^{3}} \\
& =\frac{\frac{2 x}{3(x-3)} \cdot \frac{5(x-3)}{2 x \cdot 10 x^{2}}}{2}=\frac{1}{3 \cdot 2 x^{2}} \\
& =\frac{1}{6 x^{2}}
\end{aligned}
$$

6) Simplify: $\frac{m^{2}-25}{20 m} \cdot \frac{30 m+10}{3 m^{2}+16 m+5}$

$$
=\frac{(m+5)(m-5)}{10 \cdot 2 m} \cdot \frac{10(3 m+1)}{(3 m+1)(m+5)}=\frac{m-5}{2 m}
$$

7) Divide:

$$
\begin{aligned}
& \frac{2 x-10}{15 x^{3}} \div \frac{x^{2}-5 x}{12 x} \\
&=\frac{2 x-10}{15 x^{3}} \cdot \frac{12 x}{x^{2}-5 x}=\frac{2(x-5)}{3 x \cdot 5 x^{2}} \cdot \frac{4 \cdot 3 x}{x(x-5)} \\
&=\frac{8}{5 x^{3}}
\end{aligned}
$$

8) Divide: $\frac{3 x^{2}+10 x+8}{18-6 x} \div \frac{10+5 x}{4 x^{3}-12 x^{2}}$

$$
\begin{aligned}
& =\frac{3 x^{2}+10 x+8}{\begin{array}{c}
18-6 x \\
-6 x+18
\end{array}} \cdot \frac{4 x^{3}-12 x^{2}}{10+5 x}=\frac{(3 x+4)(x+2)}{-6(x-3)} \cdot \frac{2}{3}\left(x^{2}(x-3)\right. \\
& \underbrace{3 x^{2}+10 x+8}_{1,24}=\underbrace{3 x^{2}+4 x}+\underbrace{6 x+8}=\frac{2 x^{2}(3 x+4)}{-15} \\
& \text { Product }=24 \quad 3,8=(3 x+4)(x+2) \\
& \text { Sum }=10 \quad 4,6
\end{aligned}
$$

9) Simplify

$$
\begin{aligned}
& \frac{x^{2}+2 x}{x-7}+\frac{21-12 x}{x-7} \\
& =\frac{x^{2}+2 x+21-12 x}{x-7}=\frac{x^{2}-10 x+21}{x-7} \\
& =\frac{(x-3)(x-7)}{x-7}=x-3
\end{aligned}
$$

10) Reduce $\frac{2 x^{2}+x-3}{x^{2}+6 x+5}+\frac{x^{2}-2 x+4}{x^{2}+6 x+5}-\frac{2 x^{2}+x^{2}+4}{x^{2}+6 x+5}$
$=\frac{2 x^{2}+x-3+x^{2}-2 x+4-2 x^{2}-x-4}{x^{2}+6 x+5}=\frac{x^{2}-2 x-3}{x^{2}+6 x+5}$

$$
=\frac{(x+1)(x-3)}{(x+5)(x+1)}=\frac{x-3}{x+5}
$$

17) Simplify: $\frac{x}{x+2}-\frac{10}{x^{2}-x-6}$

$$
\begin{aligned}
& =\frac{x(x-3)}{(x+2)(x-3)}-\frac{10}{(x-3)(x+2)} \\
& =\frac{x^{2}-3 x-10}{(x+2)(x-3)}=\frac{(x-5)(x+2)}{(x+2)(x-3)}=\frac{x-5}{x-3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 12) Reduce } \frac{x-7}{x^{2}+4 x-5}-\frac{x-9}{x^{2}+3 x-10} \\
& =\frac{(x-7)(x-2)}{(x+5)(x-1)(x-2)}-\frac{(x-9)(x-1)}{(x+5)(x-2)(x-1)} \\
& =\frac{(x-7)(x-2)-(x-9)(x-1)}{(x+5)(x-1)(x-2)} \quad \nabla=\frac{1}{(x-1)(x-2)} \\
& =\frac{x^{2}-2 x-7 x+14-x^{2}+x+9 x-9}{(x+5)(x-1)(x-2)}=\frac{x^{2}+5}{(x+5)(x-1)(x-2)}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { Solve: } \quad \frac{2 x}{3}+\frac{3 x}{2}=\frac{13}{3} \quad-1 x=\frac{39}{13} \\
& 6 \cdot \frac{2 x}{3}+6 \cdot \frac{3 x}{2}=6 \cdot \frac{3}{2} \\
& x=3 \\
& 4 x+9 x=39 \\
& 13 x=39
\end{aligned}
$$

Solve $\quad 3+\frac{9-2 x}{8 x}=\frac{5}{2 x} \quad>24 x+9-2 x=20$

$$
\begin{gathered}
L C D=8 x \\
8 x \cdot 3+8 x \cdot \frac{9-2 x}{8 x}=8 x \cdot \frac{5}{2 x}
\end{gathered}\left\{\begin{array}{l}
22 x=11 \quad x=\frac{11}{22} \\
\left.x=\frac{1}{2}\right]\left\{\frac{1}{2}\right\}
\end{array}\right.
$$

Solve $\quad \frac{3}{x+4}-\frac{1}{x-4}=\frac{2}{x^{2}-16}$

$$
\begin{gathered}
L C D=(x+4)(x-4) \\
(x+4)(x-4) \cdot \frac{3}{x+4}-(x+4)(x-4) \cdot \frac{1}{x-4}=(x+4)(x-4) \cdot \frac{2}{x^{2}+16} \\
3(x-4)-(x+4)=2 \\
3 x-12-x-4=2 \\
2 x=2+16 \\
2 x=18 \quad x=9
\end{gathered}
$$

Solve

$$
\begin{gathered}
\frac{1}{y^{2}-5 y+6}+\frac{y}{y^{2}-2 y-3}=\frac{y+2}{y^{2}-y-2} \\
\frac{1}{(y-3)(y-2)}+\frac{y}{(y-3)(y+1)}=\frac{y+2}{(y-2)(y+1)} \\
L C D=(y-3)(y-2)(y+1) \\
1(y+1)+y(y-2)=(y+2)(y-3) \\
y+1+y^{2}-2 y=y^{2}-3 y+2 y-6 \\
-y+1=-y-6 \quad \text { false } \\
\text { No Solution }
\end{gathered}
$$

Special Right Triangles:

$$
12=2 x
$$

Draw $\alpha=\frac{4 \pi}{3}$ in standard position, give its ref. angle in radians. $\begin{aligned} \frac{4 \pi}{3} \mathrm{Rad} & =\frac{4\left(80^{\circ}\right)^{\circ}}{5} \\ & =4\left(66^{\circ}\right) \\ & =240^{\circ}\end{aligned}$ RA. $=\frac{4 \pi}{3}-\pi$
 $=60^{\circ}$
Draw $\alpha=-\frac{\pi}{4}$ in standard position, find a positive angle that is coterminal with α, find its ref. angle in degrees. $\frac{\pi}{4}=\frac{180^{\circ}}{4}=45^{\circ}$ $2 \pi-\frac{\pi}{4}=\frac{7 \pi}{4}$

$$
\begin{aligned}
& \text { Verify } \frac{\cos ^{2} x}{1+\sin x}=1-\sin x / \\
& \sin ^{2} x+\cos ^{2} x=1 \\
& \frac{\cos ^{2} x}{1+\sin x}=\frac{1-\sin ^{2} x}{1+\sin x} \\
& \cos ^{2} x=1-\operatorname{Sin}^{2} x \\
& A^{2}-B^{2}=(A-B)(A+B) \\
& =\frac{(1-\operatorname{Sin} x)(1+\operatorname{Sin} x)}{1+\operatorname{Sin} x}=1-\operatorname{Sin} x \checkmark
\end{aligned}
$$

Verify $(\sec x-\tan x)^{2}=\frac{1-\sin x}{1+\sin x}$

$$
(\sec x-\tan x)^{2}=\left(\frac{1}{\cos x}-\frac{\sin x}{\cos x}\right)^{2}
$$

$$
=\left(\frac{1-\sin x}{\cos x}\right)^{2}=\frac{(1-\sin x)(1-\sin x)}{\cos ^{2} x}
$$

$$
\begin{aligned}
\frac{1-\sin x}{1+\sin x} & =\frac{(1-\sin x)(1-\sin x)}{1-\sin ^{2} x} \\
& =\frac{(1-\sin x)(1-\sin x)}{(1-\sin x)(1+\sin x)}
\end{aligned}
$$

Verify $\int \operatorname{Sec} x+\tan x=\frac{1}{\operatorname{Sec} x-\tan x}$

$$
\left.\begin{array}{ll}
\frac{1}{\operatorname{Sec} x-\tan x}=\frac{\operatorname{Sec}^{2} x-\tan ^{2} x}{\operatorname{Sec} x-\tan x} & \operatorname{Sin}^{2} x+\cos ^{2} x=1 \\
1+\tan ^{2} x=\operatorname{Sec}^{2} x
\end{array}\right] \begin{aligned}
& 1+\cot ^{2} x=\csc ^{2} x \\
& =\frac{(\operatorname{Sec} x-\tan x)(\operatorname{Sec} x+\tan x)}{\operatorname{Sec} x} \quad \begin{array}{l}
1=\sec ^{2} x-\tan ^{2} x \\
=\operatorname{Sec} x+\tan x
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Verify } \begin{aligned}
& \frac{\cos ^{2} x \sin x-\cos ^{3} x}{2 \sin ^{4} x-\sin ^{2} x}=\frac{\cot ^{2} x}{\sin x+\cos x} \checkmark \\
& \frac{\cos ^{2} x(\sin x-\cos x)}{\sin ^{2} x\left(2 \sin ^{2} x-1\right)}= \frac{\cot ^{2} x(\sin x-\cos x)}{2 \sin ^{2} x-1} \\
&=\frac{\cot ^{2} x(\sin x-\cos x)}{2 \sin ^{2} x-\left(\sin ^{2} x+\cos ^{2} x\right)} \\
&=\frac{\cot ^{2} x\left(\sin x-\cos ^{2} x\right)}{2 \sin ^{2} x-\sin ^{2} x-\cos ^{2} x} \\
&=\frac{\cot ^{2} x\left(\sin x-\cos ^{2} x\right)}{\sin ^{2} x-\cos ^{2} x} \\
&=\frac{\cot ^{2} x(\sin x-\cos x)}{(\sin x+\cos x)(\sin x-\cos x)}=\frac{\cot ^{2} x-B^{2}}{\sin x+\cos x}
\end{aligned}
\end{aligned}
$$

Consider a circle with radius r, make an angle with vertex at the center with measure θ radian.

find S if $r=6 \mathrm{in}$, and $\theta=60^{\circ}$.

$60^{\circ}=\frac{180^{\circ}}{3}=\frac{\pi}{3} \mathrm{Rad}$.

Area of a sector $A=\frac{1}{2} r^{2} \theta, \theta$ must be

$A=\frac{1}{2} r^{2} \theta$

$$
\begin{aligned}
& =\frac{1}{2} \cdot 4^{2} \cdot \frac{\pi}{6} \\
& =\frac{1}{2} \cdot 16 \cdot \frac{\pi}{6}=\frac{4 \pi}{3} \mathrm{ft}^{2}
\end{aligned}
$$

find area of a Sector with $r=10 \mathrm{~cm}$ and $\theta=10^{\circ}$.

$$
\begin{aligned}
A & =\frac{1}{2} r^{2} \theta \\
& =\frac{1}{2} \cdot 10^{2} \cdot \frac{\pi}{18} \\
& 2550 \\
& =\frac{1}{2} \cdot 100 \cdot \frac{\pi}{18}=\frac{25 \pi}{9} \mathrm{~cm}^{2}
\end{aligned}
$$

$10^{\circ}=$

$$
180^{\circ}=\pi \mathrm{Rad} .
$$

$$
1^{\circ}=\frac{\pi}{180} \mathrm{Rad} .
$$

$$
10^{\circ}=\frac{10 \pi}{180}=\frac{\pi}{18}
$$

Sector of a circle with radius r and Central angle θ in radians.

use $\theta=2 \pi$, for any radius r, find $S=r \theta=r \cdot 2 \pi=2 \pi r \quad$ Circumference of a circle
$A=\frac{1}{2} r^{2} \theta=\frac{1}{2} \cdot r^{2} \cdot 2 \pi=r^{2} \pi=\pi r^{2} \quad$ Area of a Circle

$\sin \beta=\frac{y}{r}$
$\cos \beta=\frac{-x}{r}$
$\tan \beta=\frac{y}{-x}$
$\sin \alpha=\frac{y}{r}$
$\cos \alpha=\frac{x}{r}$
$\tan \alpha=\frac{y}{x}$

$$
\begin{aligned}
& \sin A=\frac{-y}{r} \\
& \cos A=\frac{-x}{r} \\
& \tan A=\frac{-y}{-x}=\frac{y}{x}
\end{aligned}
$$

find $\operatorname{Sin} 120^{\circ}, \operatorname{Cos} 120^{\circ}$, and $\tan 120^{\circ}$.

$$
\begin{aligned}
& \sin 120^{\circ}=\sin 60^{\circ}=\frac{\sqrt{3}}{2} \\
& \cos 120^{\circ}=-\cos 60^{\circ}=-\frac{1}{2} \\
& \tan 120^{\circ}=-\tan 60^{\circ}=-\sqrt{3}
\end{aligned}
$$

find $\operatorname{Sin} 210^{\circ}, \cos 210^{\circ}$, and $\tan 210^{\circ}$

$$
\begin{aligned}
& \sin 210^{\circ}=-\sin 30^{\circ}=-\frac{1}{2} \\
& \cos 210^{\circ}=-\cos 30^{\circ}=-\frac{\sqrt{3}}{2} \\
& \tan 210^{\circ}=\tan 30^{\circ}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}
\end{aligned}
$$

find $\sin \frac{7 \pi}{4}, \cos \frac{7 \pi}{4}$, and $\tan \frac{7 \pi}{4}$.

$$
\frac{7 \pi}{4}=\frac{7\left(180^{\circ}\right)}{4}=315^{\circ}
$$

Q V
$\operatorname{Sin} \frac{7 \pi}{4}=-\operatorname{Sin} \frac{\pi}{4}=-\frac{\sqrt{2}}{2}$

$\cos \frac{7 \pi}{4}=\operatorname{Cos} \frac{\pi}{4}=\frac{\sqrt{2}}{2}$
$\tan \frac{7 \pi}{4}=-\tan \frac{\pi}{4}=-1$

Given $\quad \operatorname{Sin} \alpha=\frac{3}{5}, \quad 90^{\circ}<\alpha<180^{\circ}$

Given $\quad \operatorname{Cos} \alpha=\frac{-5}{13}, 180^{\circ}<\alpha<270^{\circ}$

$$
\begin{aligned}
& \sin \alpha=\frac{-12}{13} \\
& \cos \alpha=\frac{-5}{13} \\
& \tan \alpha=\frac{-12}{-5}=\frac{12}{5}
\end{aligned}
$$

$\tan \alpha=\frac{-2}{3}, \quad \alpha$ in QIV
$\tan \alpha=\frac{y}{x}=\frac{-2}{3}$
$\sin \alpha=\frac{-2}{\sqrt{13}}=\frac{-2 \sqrt{13}}{13}$

$\cos \alpha=\frac{3}{\sqrt{13}}=\frac{3 \sqrt{13}}{13}$
$\tan \alpha=\frac{-2}{3}$

$$
\cos \alpha=\frac{5}{6}, \quad \underbrace{0^{\circ}<\alpha<90^{\circ}}_{Q I}
$$

$\sin \alpha=\frac{\sqrt{11}}{6}$
$\cos \alpha=\frac{5}{6}$

$$
\tan \alpha=\frac{\sqrt{11}}{5}
$$

Two angles are Complementary if their Sum $=90^{\circ}$

$$
=\text { Supplementary, } "==180^{\circ}
$$

Find the complement and Supplement of $\alpha=15^{\circ}$.
Comp. $+15^{\circ}=90^{\circ} \rightarrow$ Comp. $=90^{\circ}-15^{\circ}=75^{\circ}$
Supp. $+15^{\circ}=180^{\circ} \rightarrow$ Supp. $=180^{\circ}-15^{\circ}=165^{\circ}$
find the complement and supplement for $\alpha=\frac{\pi}{5} \mathrm{Rad}$.
Comp. $+\frac{\pi}{5}=\frac{\pi}{2} \rightarrow$ Comp. $_{1}=\frac{\pi}{2}-\frac{\pi}{5}=\frac{5 \pi-2 \pi}{10}=\frac{3 \pi}{10}$
Supp. $+\frac{\pi}{5}=\pi \rightarrow$ Supp. $=\pi-\frac{\pi}{5}=\frac{4 \pi}{5}$
from 450 ft of a building, the angle of elevation to the top of the building is 75°. How tall is the building?

$$
\begin{aligned}
& \tan 75^{\circ}=\frac{h}{450} \\
& h=450 \cdot \tan 75^{\circ} \\
& =1679.422863
\end{aligned}
$$

Round up

$$
h \approx 1680 \mathrm{ft}
$$

Heron's formula:

Area $=\sqrt{S(S-a)(S-b)(S-c)}$ where $S=\frac{a+b+c}{2}$

$$
\begin{aligned}
& S=\frac{3+7+8}{2}=\frac{18}{2}=9 \\
& \text { Area }=\sqrt{9(9-3)(9-7)(9-8)} \\
& =\sqrt{9 \cdot 6 \cdot 2 \cdot 1} \\
& =\sqrt{108} \approx 10.392 \\
& \approx 10.4 \text { units }^{2}
\end{aligned}
$$

find area of a triangle with sides $4 \mathrm{in}, 6 \mathrm{in}$, and 8 in .

Using Heron's formula

$$
S=\frac{a+b+c}{2}=\frac{4+6+8}{2}=\frac{18}{2}=9
$$

$$
\begin{aligned}
\text { Area }=\sqrt{9(9-4)(9-6)(9-8)}=\sqrt{9 \cdot 5 \cdot 3 \cdot 1} & =\sqrt{135} \\
& =11.618 \ldots \\
& \approx 12 \mathrm{in}^{2} .
\end{aligned}
$$

