

Some algebra review:
1) Reduce
$$\frac{9xy}{3x-6y} = \frac{9xy}{8(x-2y)} = \frac{3xy}{x-2y}$$

2) Simplify $\frac{2x^2+9x}{x^2-16} = \frac{2x(x+4)}{(x+4)(x-4)} = \frac{2x}{x-4}$
3) Reduce $\frac{x^2+2x-15}{x^2+x-12} = \frac{(x+5)(x-3)}{(x+4)(x-3)} = \frac{x+5}{x+4}$
4) Simplify $\frac{x^3-16x}{x^3+6x^2+8x} = \frac{x(x^2-16)}{x(x^2+6x+8)}$
 $= \frac{(x+4)(x-4)}{(x+4)(x+2)} = \frac{x-4}{x+2}$

5) Multiply:
$$\frac{2\chi}{3\chi-9} \cdot \frac{5\chi-15}{30\chi^3}$$

$$= \frac{2\chi}{3(\chi-3)} \cdot \frac{5(\chi-3)}{2\chi\cdot10\chi^2} \cdot \frac{1}{3\cdot2\chi^2}$$
6) Simplify: $\frac{m^2-25}{20m} \cdot \frac{30m+10}{3m^2+16m+5}$

$$= \frac{(m+5)(m-5)}{10\cdot2m} \cdot \frac{10(3m+1)}{(3m+1)(m+5)} \cdot \frac{m-5}{2m}$$

7) Divide:
$$\frac{2x-10}{15x^3}$$
: $\frac{x^2-5x}{12x}$

$$= \frac{2x-10}{15x^3} \cdot \frac{12x}{x^2-5x} = \frac{2(x-5)}{3x \cdot 5x^2} \cdot \frac{4 \cdot 3x}{x(x-5)}$$
8) Divide: $\frac{3x^2+10x+8}{18-6x}$: $\frac{10+5x}{4x^3-12x^2}$

$$= \frac{3x^2+10x+8}{18-6x} \cdot \frac{4x^3-12x^2}{10+5x} = \frac{(3x+4)(x+2)}{5(x+2)} \cdot \frac{4x^2(x-3)}{5(x+2)}$$

$$= \frac{3x^2+10x+8}{18-6x} \cdot \frac{4x^3-12x^2}{10+5x} = \frac{(3x+4)(x+2)}{5(x+2)} \cdot \frac{4x^2(3x+4)}{-15}$$

$$= \frac{3x^2+10x+8}{3x^2+18} = \frac{3x^2+4x+6x+8}{3x^2+16x+1} = \frac{2x^2(3x+4)}{-15}$$
Product=24 $\frac{3}{2}$, $\frac{8}{2}$ = $(3x+4)(x+2)$

9) Simplify
$$\frac{\chi^{2}+2\chi}{\chi-7}$$
 $\frac{21-12\chi}{\chi-7}$

$$= \frac{\chi^{2}+2\chi}{\chi-7} + 21-12\chi = \frac{\chi^{2}-10\chi}{\chi-7}$$

$$= \frac{(\chi-3)(\chi-7)}{\chi-7} = \frac{(\chi-3)(\chi-7)}{\chi-7} = \frac{(\chi-3)(\chi-7)}{\chi^{2}+6\chi+5} = \frac{\chi^{2}-2\chi+4}{\chi^{2}+6\chi+5} = \frac{\chi^{2}-2\chi+4}{\chi^{2}+6\chi+5}$$

$$= \frac{\chi^{2}+\chi-3+\chi^{2}-2\chi+4}{\chi^{2}+6\chi+5} = \frac{\chi^{2}-2\chi-3}{\chi^{2}+6\chi+5}$$

$$= \frac{(\chi+1)(\chi-3)}{(\chi+5)(\chi+1)} = \frac{\chi-3}{\chi+5}$$

11) Simplify:
$$\frac{\chi}{\chi + 2} - \frac{10}{\chi^2 - \chi - 6}$$

$$= \frac{\chi(2-3)}{(\chi+2)(\chi-3)} - \frac{10}{(\chi-3)(\chi+2)}$$

$$= \frac{\chi^2 - 3\chi - 10}{(\chi + 2)(\chi - 3)} = \frac{(\chi - 5)(\chi + 2)}{(\chi + 2)(\chi - 3)} = \frac{\chi - 5}{\chi - 3}$$

12) Reduce
$$\frac{x-7}{x^2+4x-5} - \frac{x-9}{x^2+3x-40}$$

= $\frac{(x-7)(x-2)}{(x+5)(x-1)(x-2)} - \frac{(x-9)(x-1)}{(x+5)(x-2)(x-1)}$

= $\frac{(x-7)(x-2) - (x-9)(x-1)}{(x+5)(x-1)(x-2)}$

= $\frac{(x-7)(x-2) - (x-9)(x-1)}{(x+5)(x-1)(x-2)}$

= $\frac{x^2-2x-7x+14-x^2+x+9x-9}{(x+5)(x-1)(x-2)}$

(x+5)(x-1)(x-2)

Solve:
$$\frac{\partial x}{\partial x} + \frac{3x}{2} = \frac{13}{3}$$

LCD = 6

2

8. $\frac{2x}{3} + 8 \cdot \frac{3x}{2} = 6 \cdot \frac{13}{3}$

Variable: $\frac{2x}{3} + 8 \cdot \frac{3x}{2} = 6 \cdot \frac{13}{3}$

Solve: $\frac{3x}{3} + 8 \cdot \frac{3x}{2} = \frac{5}{2x}$

Solve: $\frac{3}{3} + \frac{3}{3} = \frac{5}{2x}$

Solve: $\frac{3}{3} + \frac{3}{3} = \frac{5}{3}$

Solve: $\frac{3}{3} + \frac{3}{3} = \frac{5}{3} = \frac{5}{3}$

Solve: $\frac{3}{3} + \frac{3}{3} = \frac{5}{3} = \frac{5}$

Solve
$$\frac{3}{x+4} - \frac{7}{x-4} = \frac{2}{x^2-16}$$

L(D= $(x+4)(x-4)$)

 $(x+4)(x-4) \cdot \frac{3}{x+4} - (x+4)(x-4) \cdot \frac{1}{x4} = (x+4)(x-4) \cdot \frac{2}{x^2-16}$
 $3(x-4) - (x+4) = 2$
 $3x - 12 - x - 4 = 2$
 $2x = 2 + 16$
 $2x = 18$ $x = 9$

Solve
$$\frac{1}{y^{2}-5y+6} + \frac{y}{y^{2}-2y-3} = \frac{y+2}{y^{2}-y-2}$$

$$\frac{1}{(y-3)(y-2)} + \frac{y}{(y-3)(y+1)} = \frac{y+2}{(y-2)(y+1)}$$

$$L(D=(y-3)(y-2)(y+1)$$

$$1(y+1) + y(y-2) = (y+2)(y-3)$$

$$y+1 + y^{2}-2y = y^{2}-3y + 2y-6$$

$$y+1 = -y-6$$
No solution
$$1 = -6$$

Verify
$$\frac{\cos^2 x}{1 + \sin x} = 1 - \sin x$$

$$\frac{\cos^2 x}{1 + \sin x} = \frac{1 - \sin^2 x}{1 + \sin x}$$

$$\frac{(1 - \sin x)(1 + \sin x)}{1 + \sin x} = 1 - \sin x$$

$$\frac{(1 - \sin x)(1 + \sin x)}{1 + \sin x} = 1 - \sin x$$

Verify
$$(\operatorname{Sec} x - \tan x)^2 = \frac{1 - \operatorname{Sin} x}{1 + \operatorname{Sin} x}$$

 $(\operatorname{Sec} x - \tan x)^2 = (\frac{1}{\cos x} - \frac{\operatorname{Sin} x}{\cos x})^2$
 $= (\frac{1 - \operatorname{Sin} x}{\cos x})^2 = \frac{(1 - \operatorname{Sin} x)(1 - \operatorname{Sin} x)}{\cos^2 x}$
 $= \frac{(1 - \operatorname{Sin} x)(1 - \operatorname{Sin} x)}{1 - \operatorname{Sin}^2 x}$
 $= \frac{(1 - \operatorname{Sin} x)(1 - \operatorname{Sin} x)}{(1 - \operatorname{Sin} x)(1 - \operatorname{Sin} x)}$

Verify
$$\int Sec x + tan x = \frac{1}{Sec x - tan x}$$

$$\frac{A^2 - B^2}{Sec x - tan x} = \frac{1}{Sec x - tan x}$$

$$\frac{1}{Sec x - tan x} = \frac{Sec x - tan x}{Sec x - tan x}$$

$$\frac{1 + tan x = Sec x}{1 + Cot^2 x = Csc^2 x}$$

$$\frac{1}{1 - Sec^2 x - tan x}$$

$$= Sec x + tan x$$

Verify
$$\frac{\cos^2 x \sin x - \cos^3 x}{a \sin^2 x - \sin^2 x} = \frac{\cot^2 x}{\sin x + \cos x}$$

$$\frac{\cos^2 x \left(\sin x - \cos x \right)}{\cos^2 x \left(a \sin^2 x - 1 \right)} = \frac{\cot^2 x \left(\sin x - \cos x \right)}{a \sin^2 x - 1}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{a \sin^2 x - \left(\sin x + \cos x \right)}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{a \sin^2 x - \sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

$$= \frac{\cot^2 x \left(\sin x - \cos x \right)}{\sin^2 x - \cos^2 x}$$

Sector of a Circle with radius r and Central angle θ in radians.

Use $\theta = 2\pi$, for any radius r, find $S = r \theta = r \cdot 2\pi = 2\pi r$ Circumference of a Circle

$$A = \frac{1}{2} r^2 \theta = \frac{1}{2} \cdot r^2 \cdot \alpha \pi = r^2 \pi = \pi r^2$$
 Area of a Circle

Sin 120° = Sin 60° =
$$\frac{\sqrt{3}}{2}$$

Cos 120° = $-\frac{1}{2}$

$$\tan (20^\circ = -\tan 60^\circ = -\sqrt{3}$$

find Sin 210°, Cos 210°, and tan 210°.

$$\sin 210^\circ = -\sin 30^\circ = -\frac{1}{2}$$

$$\frac{1}{0}$$
 Cos 210° = $-\cos 30^{\circ} = -\frac{\sqrt{3}}{2}$

$$\tan 210^\circ = \tan 30^\circ = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

$$\frac{7\pi}{4} = \frac{7(180^\circ)}{4} = 315^\circ$$

$$Sin \frac{77}{4} = -Sin \frac{7}{4} = -\frac{\sqrt{2}}{2}$$

$$\cos \frac{7\pi}{4} : \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$$

$$\tan \frac{7\pi}{4} = -\tan \frac{\pi}{4} = -1$$

Given Sin
$$\alpha = \frac{3}{5}$$
, $90^{\circ} < \alpha < 180^{\circ}$

Sin $\alpha = \frac{3}{5}$
 $\cos \alpha = \frac{-4}{5}$
 $\tan \alpha = \frac{3}{4} = \frac{-3}{4}$

Cos $\alpha = \frac{-12}{13}$

Sin $\alpha = \frac{-12}{13}$

Sin $\alpha = \frac{-12}{13}$
 $\tan \alpha = \frac{-12}{-5} = \frac{12}{5}$

$$\tan \alpha = \frac{2}{3}, \quad \alpha \text{ in QIV}$$

$$\tan \alpha = \frac{9}{2} = \frac{2}{3}$$

$$\sin \alpha = \frac{2}{\sqrt{13}} = \frac{2\sqrt{13}}{13}$$

$$\cos \alpha = \frac{3}{\sqrt{13}} = \frac{3\sqrt{13}}{13}$$

$$\tan \alpha = \frac{-2}{3}$$

$$\cos \alpha = \frac{5}{6}, \quad 0^{\circ} < \alpha < 90^{\circ}$$

$$\sin \alpha = \frac{5}{6}$$

$$\cos \alpha = \frac{5}{6}$$

$$\tan \alpha = \frac{5}{5}$$

Two angles are Complementary if their sum=90°

Supplementary = = 180°

Find the Complement and Supplement of
$$\alpha=15^\circ$$
.

Comp. + $15^\circ=90^\circ$ -> Comp. = $90^\circ-15^\circ=75^\circ$

Supp. + $15^\circ=180^\circ$ -> Supp. = $180^\circ-15^\circ=165^\circ$

Sind the Complement and Supplement for $\alpha=\frac{\pi}{5}$ and Comp. + $\frac{\pi}{5}=\frac{\pi}{2}$ -> Comp. = $\frac{\pi}{2}\cdot\frac{\pi}{5}=\frac{5\pi-2\pi}{10}$ $\frac{3\pi}{10}$

Supp. + $\frac{\pi}{5}=\pi$ -> Supp. = $\pi-\frac{\pi}{5}=\frac{4\pi}{5}$

from 450 ft of a building, the angle of elevation to the top of the building is 75°. How tall is the building?

h= 450 · tan 75° = 1679, 422863

Round UP h≈1680\$+

Heron's Formula:

Area =
$$\sqrt{S(S-a)(S-b)(S-c)}$$

Where $S = \frac{a+b+c}{2}$

S= $\frac{3+7+8}{2} = \frac{18}{2} = 9$

Area = $\sqrt{9(9-3)(9-7)(9-8)}$

= $\sqrt{9\cdot6\cdot2\cdot1}$

= $\sqrt{108} \approx 10.392$
 $\approx 10.4 \text{ units}^2$

Sind area of a triangle with Sides

4 in, 6 in, and 8 in.

Using Heron's formula

Area = $\sqrt{8(S-a)(S-b)(S-c)}$ S = $\frac{a+b+c}{2} = \frac{4+6+8}{2} = \frac{18}{2} = 9$ Area = $\sqrt{9(9-4)(9-6)(9-8)} = \sqrt{9\cdot5\cdot3\cdot1} = \sqrt{13\cdot5}$ = 11.618-... ≈ 12 in?